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 A B S T R A C T

Nonnegative matrix factorization (NMF) stands as a prevalent algebraic representation technique deployed 
across diverse domains such as data mining and machine learning. At its core, NMF aims to minimize the 
distance between the original input and a lower-rank approximation of it. However, when data is noisy or 
contains outliers, NMF struggles to provide accurate results. Existing robust methods rely on known distribution 
assumptions, which limit their effectiveness in real-world situations where the noise distribution is unknown. 
To address this gap, we introduce a new model, called instance-wise distributionally robust NMF (iDRNMF), 
that can handle a wide range of noise distributions. By leveraging a weighted sum multi-objective method, 
iDRNMF can handle multiple noise distributions and their combinations. Furthermore, while the entry-wise 
models assume noise contamination at the individual matrix entries level, the proposed instance-wise model 
assumes noise contamination at the entire data instances level (columns of the input matrix). This instance-wise 
model is often more appropriate for data representation tasks, as it addresses the noise affecting entire feature 
vectors rather than individual features. To train this model, we develop a unified multi-objective optimization 
framework based on an iterative reweighted algorithm, which maintains computational efficiency similar to 
single-objective NMFs. This framework provides flexible updating rules, making it suitable for optimizing a 
wide range of robust and distributionally robust objectives. Extensive experiments on various datasets with 
distinct noise distributions and mixtures thereof show the superior performance of iDRNMF compared to 
state-of-the-art models, showcasing its effectiveness in handling diverse noise profiles on real-world problems.
1. Introduction

Data representation is a fundamental technique for data analysis 
and machine learning and plays a crucial role in various practical 
applications such as computer vision, data compression, clustering, 
and information retrieval [1]. In these applications, the input data 
usually possesses a high dimensionality, making it practically chal-
lenging to learn directly from the original data. Moreover, not all 
features are equally important or discriminative, as many are corre-
lated, redundant, or noisy. This leads to the necessity of obtaining a 
suitable representation for data with decreased dimensions. Dimension-
ality reduction stands out as a widely employed strategy to discover 
meaningful representations of data by exploring the underlying struc-
tures of data [2]. Over the past decades, matrix factorization techniques 
have been effectively applied to obtain such data representations. The 
representative matrix factorization approaches include the singular 
value decomposition (SVD), principal component analysis (PCA), in-
dependent component analysis (ICA), vector quantization (VQ), and 
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nonnegative matrix factorization (NMF) [3]. Specifically, NMF has 
gained significant popularity for image and text representation.

NMF stands out as a classical approach for the analysis of high-
dimensional nonnegative data, offering an intuitively physical inter-
pretation [4]. Different from PCA and SVD, NMF identifies two non-
negative matrices whose product closely approximates the original 
matrix. Due to its restriction to additive, non-subtractive combinations, 
NMF acquires a natural parts-based representation as opposed to a 
global one for the data [3]. Typically, these two matrices consist of 
a basis matrix, which can be regarded as parts-based representations 
of the input data, and a coefficient matrix responsible for storing a 
low-dimensional representation. The low-dimensional representation 
with nonnegativity provides interpretability because the learned rep-
resentation is more consistent with human perception, supported by 
psychological and physiological evidence [5]. Therefore, NMF has been 
used as a dimensionality reduction method for various applications, in-
cluding clustering [6,7], community detection [8], link prediction [9], 
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data mining, AI training, and similar technologies. 
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data representation [10,11], and multi-view representation [12], across 
unsupervised, semi-supervised, and supervised learning paradigms.

While NMF and its extensions have demonstrated success across var-
ious domains, they face challenges in learning a robust low-dimensional 
representation when the original dataset is affected by outliers and 
noise. Basic NMF, using the least squares error function (a.k.a. the 
𝐿2 loss) to assess the quality of factorization, is optimal for datasets 
containing additive Gaussian noise [13]. However, it may not be the 
most suitable choice in the presence of non-Gaussian noise, such as 
heavy-tailed distributions (e.g., Laplace, Cauchy) or outliers. When 
dealing with non-Gaussian noise, the 𝐿2 loss can be sensitive to extreme 
values and may not accurately capture the underlying patterns in 
the data. In such scenarios, alternative loss functions may be more 
effective. To address this challenge, several robust M-estimator-based 
loss functions have been integrated into NMF as the similarity measure, 
replacing the squared Euclidean distance to enhance robustness to non-
Gaussian noise. Some common alternatives to the 𝐿2 loss function are 
the 𝐿1-norm [14], 𝐿2,1-norm [13], Huber [15], and correntropy [16].

Conceptually, these methods aim to substitute the 𝐿2 loss with a 
robust estimator that is less sensitive to noise and outliers. Hamza and 
Brady [17] introduced hypersurface cost-based NMF (HCNMF), seeking 
to minimize the hypersurface cost function between the data matrix and 
its approximation. While HCNMF represents an early effort to enhance 
the robustness of NMF, its optimization algorithm is time-consuming 
due to the complex Armijo’s rule-based line search it employs. Kong 
et al. [13] proposed a robust 𝐿2,1-NMF, replacing the Frobenius norm 
with the 𝐿2,1 norm to measure reconstructed errors. In contrast to basic 
NMF, 𝐿2,1-NMF eliminates squaring, preventing a few outliers from 
dominating the loss function. Moreover, 𝐿2,1-NMF proves advantageous 
for data with Laplacian noise. Although this method is less sensitive to 
noise than HCNMF, the proposed algorithm leads to a more compli-
cated factorization process due to its non-smooth loss function. More 
recently, Li et al. [18] introduced a robust NMF model based on the 
𝐿2,1∕2-norm, enhancing 𝐿2,1-NMF to improve resilience against noise 
and outliers. 

While 𝐿1-norm and 𝐿2,1-norm based NMF methods show increased 
robustness by eliminating the square of reconstructed errors compared 
to the original NMF, they may still face limitations, especially in the 
presence of substantial outliers. Huber’s function-based NMF methods 
also face this issue, as they involve a convolution of 𝐿2 squared 
and 𝐿1 absolute loss functions. In response to this challenge, Liutkus 
et al. [19] explored Cauchy NMF, which employs an isotropic Cauchy 
distribution to assess the reconstruction error, optimizing this process 
in a maximum likelihood sense. Furthermore, several robust versions 
of NMF have been proposed in [15], including NMF based on the 
Correntropy Induced Metric (CIM-NMF), row-based CIM-NMF (rCIM-
NMF), and Huber-NMF. Correntropy, which is closely associated with 
the Welsch M-estimator. It directly corresponds to the likelihood of how 
similar two random variables are in the vicinity of the joint space [20].

Gao et al. [21] introduced a capped norm NMF to mitigate the 
impact of outliers through an outlier threshold. However, the challenge 
lies in the uncertainty of determining the proper outlier threshold. 
Guan et al. [22] proposed the three-sigma rule for outlier detection and 
a Truncated Cauchy loss to address outliers. The Truncated Cauchy-
based NMF method exhibits insensitivity against both moderate and 
extreme outliers, but it requires the specification of two parameters for 
the truncated Cauchy function. In short, the aforementioned methods 
attain robustness by replacing the usual squared loss function with 
other measures that limit the effect of outliers on the final residue. 
These methods collectively are categorized under robust optimization 
(RO).

Different from RO, Distributionally Robust Optimization (DRO), 
introduced by Scarf [23], addresses data uncertainty in a probabilistic 
manner. It seeks not only to perform well on a fixed problem instance, 
parameterized by a distribution, but also simultaneously across a range 
of problems, each determined by a distribution within an uncertainty 
2 
set 𝛺. DRO is the process of minimizing a worst-case expected loss 
function over a probabilistic ambiguity set, constructed from observed 
samples and characterized by certain known properties of the true data-
generating distribution. The approach leads to more robust solutions. 
DRO has emerged as an active area of research in recent years due to 
its probabilistic interpretation of uncertain data, tractability, when in-
tegrated with certain metrics, and notable performance, demonstrated 
in numerical examples.

Gillis et al. [24] present an NMF method that incorporates distri-
butional robustness. Their proposed model addresses the challenges 
associated with robust NMF by employing the 𝛽-divergence family 
as the objective function. The authors systematically investigate the 
impact of various noise distributions, including Gaussian, Poisson, and 
Gamma, within the context of text and audio analysis. By incorpo-
rating these distributions, the model aims to augment the accuracy 
and robustness of NMF across various domains. The model adopts a 
weighted sum of the different objective functions, including the Frobe-
nius norm, Kullback–Leibler divergence, and Itakura-Saito divergence, 
thereby ensuring robustness to various types of noise distributions.

Distributionally robust NMF, despite its promising potential for 
handling data uncertainty, remains a relatively under-explored area 
with significant room for further investigation. While an entry-wise 
formulation has been introduced in the recent literature [24], it focuses 
on robustness to 𝛽-divergences within the context of text and audio 
analysis. Entry-wise NMF models treat each entry of the input matrix 
independently, making them suitable for applications where each value 
holds a distinct meaning [25–28], such as document-term matrices in 
text processing or spectrogram representations in audio analysis. A typ-
ical example is 𝐿1–NMF (

∑𝑚
𝑗=1

∑𝑛
𝑖=1 |𝑋𝑗𝑖 − [𝑊𝐻]𝑗𝑖|), which minimizes 

the absolute sum of individual entry-wise errors, ensuring robustness 
by reducing sensitivity to outliers at the element level. In contrast, 
instance-wise NMF models provide a holistic view of the data by 
treating each column as a unit, which we also refer to as an instance 
or a sample, making them more appropriate for datasets where entire 
columns represent meaningful entities, such as images in computer 
vision, such as images in computer vision [25], genomic and clinical 
data in bioinformatics [26], pixels in hyperspectral analysis [27], or 
time-series data in financial and insurance risk analysis [28]. Unlike 
entry-wise models that mitigate noise at the individual value level, 
instance-wise models aim to capture global structures and relationships 
between columns, ensuring robustness against instance-level variations. 
This instance-wise robustness is particularly beneficial in clustering 
and classification applications, where maintaining consistency across 
instances despite noise or outliers is crucial. A key example is 𝐿2,1–NMF 
(∑𝑛

𝑖=1 ‖𝒙𝑖−𝑾 𝒉𝑖‖), which minimizes the sum of 𝐿2 norms over columns, 
making the model robust at the instance level by mitigating the effect 
of corrupted or outlier instances while preserving the overall data 
structure.

In this paper, we introduce the instance-wise distributionally robust 
nonnegative matrix factorization (iDRNMF) model, designed to han-
dle a wide range of noise distributions. The model is presented in a 
multi-objective framework, highly suitable for various robust data rep-
resentation tasks. It is noteworthy that the proposed model provides a 
unified and general framework with a complexity order closely aligned 
with basic NMF. Furthermore, employing the iterative reweighted least 
squares method, it has the capacity to cover most objective functions 
found in the distributionally robust literature. The contributions of this 
paper are outlined as follows:

• We introduce a multi-objective NMF designed to exhibit robust-
ness across a wide range of different types of noise distributions, 
termed distributionally robust, closely aligning with principles 
of robust optimization. To be specific, we consider a weighted 
sum of different objective functions, a widely employed approach 
in multi-objective optimization. This factorization minimizes a 
worst-case expected loss function over probabilistic ambiguity. 
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Our primary motivation for exploring this class of models stems 
from the inherent ambiguity in selecting a specific objective 
function, particularly in applications where the statistics of the 
noise are unknown.

• Our model focuses on the noise associated with a single sam-
ple, distinguishing it from the majority of robust NMF models 
that consider that the noise of each entry follows a specific 
distribution. Consequently, our objective function stands apart 
from existing models. Specifically, they evaluate the quality of 
factorization through an entry-wise loss function, whereas our 
iDRNMF model assesses this quality using an instance-wise (that 
is, column-wise) loss function.

• The factorization method introduced in this paper is a general 
framework that can handle any set of noise; however, our focus 
is on addressing various common distributions that are typically 
encountered in real-world problems, such as image data represen-
tation. We specifically consider Gaussian, Laplacian, and Cauchy 
loss functions, forming a comprehensive package to be robust 
against mesokurtic and leptokurtic noise distributions, that is, 
distributions without and with outliers and without and with 
heavy tails, respectively. To be specific, in the Laplace and the 
Cauchy distributions, because of their heavy tail characteristics, 
the data reveals a much higher degree of outliers [29]. Therefore, 
our iDRNMF model is adapted at handling both moderate and 
extreme outliers stemming from these diverse noise distributions.

• We present a unified and flexible framework to optimize any 
distributionally robust NMF model with a customizable set of 
objective functions. Our iDRNMF provides highly efficient and 
elegant updating rules with the use of an iterative reweighted 
algorithm. Notably, our model incurs nearly the same computa-
tion cost as basic NMF, making it convenient for solving problems 
across various contexts. Furthermore, we present an efficient and 
straightforward trick to enhance computational efficiency that 
can be easily adapted for various robust NMF models.

• To assess the distributional robustness of the proposed model, 
we performed a series of experiments on several well-known 
datasets. We employ two main evaluation settings: adding noise 
with distinct distributions to the data separately, and introducing 
a mixture of noise with different distributions, thereby simulating 
real-world scenarios. The experimental results show the superior 
performance of iDRNMF compared to state-of-the-art models.

This paper is structured as follows: Section 2 provides essential 
background information, offering a brief overview of standard NMF, 
𝐿2,1–NMF, and Cauchy NMF, along with an introduction to the iter-
ative reweighted algorithm. Section 3 introduces the iDRNMF model, 
presenting the corresponding updating rules for the proposed model. In 
Section 4, the proposed method is validated on well-known real-world 
benchmarks.

Notation

Lowercase letters stand in for scalars, while boldface lowercase 
letters and uppercase letters stand in for vectors and matrices, respec-
tively. For any matrix 𝑴 , its 𝑖th column and 𝑗th row are denoted 
by 𝒎𝑖 and 𝒎(𝑗), and 𝑀𝑖𝑗 represents its (𝑖, 𝑗)-entry. The trace of 𝑴
is represented by Tr(𝑴), and the transposed matrix of 𝑴 is denoted 
by 𝑴⊤. The Frobenius norm of a matrix 𝑴 ∈ R𝑑×𝑛 is ‖𝑴‖𝐹 =
√

∑𝑛
𝑖=1

∑𝑑
𝑗=1𝑀

2
𝑗𝑖 =

√

Tr(𝑴⊤𝑴) =
√

Tr(𝑴𝑴⊤). When running an 
algorithm to optimize a variable 𝒙, the 𝑡th iterate is denoted 𝒙[𝑡].

2. Preliminaries

In this section, we provide a review of key preliminaries, includ-
ing the original NMF, 𝐿2,1-NMF, and Cauchy NMF. Additionally, we 
introduce the iterative reweighted algorithm, commonly employed for 
solving the general reconstruction problem.
3 
2.1. Basic nonnegative matrix factorization

Let 𝑿 be the given data matrix, represented as 𝑿 = [𝒙1,𝒙2,… ,𝒙𝑛] ∈
R𝑚×𝑛, where 𝑚 is the number of features and 𝑛 is the number of samples. 
Each column vector 𝒙𝑖 denotes a nonnegative data sample with 𝑚
dimensions. NMF aims to discover two nonnegative matrices 𝑾 ∈ R𝑚×𝑟

and 𝑯 ∈ R𝑟×𝑛, which can accurately reconstruct the data matrix as 
𝑿 ≈ 𝑾𝑯 , according to the following objective function: 

min
𝑾 ,𝑯

𝑛
∑

𝑖=1
𝛯
(

𝑒(𝒙𝑖,𝑾 𝒉𝑖)
)

, 𝑠.𝑡. 𝑾 ,𝑯 ≥ 0, (1)

where 𝑒 measures the error between 𝒙𝑖 and 𝑾 𝒉𝑖 and 𝛯 is a loss 
function. Each sample 𝒙𝑖 is approximated by a linear combination of the 
vector bases in 𝑾 , using coefficients given by the vector 𝒉𝑖. The basic 
NMF model utilizes the square error distance to quantify the difference 
between 𝑿 and 𝑾𝑯 : 

min
𝑾 ,𝑯

‖𝑿 −𝑾𝑯‖

2
𝐹 =

𝑛
∑

𝑖=1
‖𝒙𝑖 −𝑾 𝒉𝑖‖2, 𝑠.𝑡. 𝑾 ,𝑯 ≥ 0, (2)

where ‖𝒙𝑖−𝑾 𝒉𝑖‖ is the reconstruction error of the 𝑖th sample. Although 
model (2) is convex in 𝑾  and 𝑯 separately, it loses convexity when 
both variables are considered simultaneously. Therefore, it is imprac-
tical to guarantee, in general, the computation of a globally optimal 
solution because of the NP-hardness of NMF [30], and local optimal 
solutions can be obtained by using standard optimization methods. It 
is worth noting that the majority of NMF algorithms are iterative and 
leverage the fact that NMF can be simplified to a convex nonnegative 
least squares problem (NNLS) when either 𝑾  or 𝑯 is fixed. Specifically, 
throughout each iteration, one of the two factors is held constant 
while the other is updated in such a way that decreases the objective 
function. Relies on a majorization-minimization approach, the most 
well-known and widely used algorithm is the Multiplicative Update 
Rule (MUR) [31]: 

𝑾 ← 𝑾 ⊙ 𝑿𝑯⊤

𝑾𝑯𝑯⊤ , 𝑯 ← 𝑯 ⊙ 𝑾 ⊤𝑿
𝑾 ⊤𝑾𝑯

, (3)

where ⊙ indicates the Hadamard product.

2.2. Iterative reweighted algorithm

The iterative reweighted least squares (IRLS) algorithm is a straight-
forward yet potent method commonly employed to optimize robust 
models [13,15,22,32,33]. Instead of directly minimizing the computa-
tionally intensive non-quadratic objective function, the IRLS method 
breaks it down into a sum of weighted least squares subproblems. 
This method leverages efficient linear algebra routines, sparse matrix 
operations, and parallelization for enhanced computational efficiency. 
Denote 𝑒𝑖 as the reconstruction error of the 𝑖th instance, which is the 
difference between the true value and the reconstructed value. For 
example, in the context of instance-wise factorization, 𝑒𝑖 = ‖𝒙𝑖 −𝑾 𝒉𝑖‖
is some norm of the difference between the original instance 𝒙𝑖 and its 
reconstructed version 𝑾 𝒉𝑖. The general reconstruction problems can 
be expressed as follows: 

min
𝒗

𝑛
∑

𝑖=1
𝛯
(

𝑒𝑖(𝒗)
)

, (4)

where 𝛯(.) is an increasing function in the nonnegative scalar 𝑒𝑖(𝑣) ≥
0, and 𝒗 = [𝑣1, 𝑣2,… , 𝑣𝑝]⊤ contains the 𝑝 unknown variables, to be 
computed when solving problem (4). In the factorization, 𝒗 contains 
the entries of 𝑾  and 𝑯 . To reach the optimal solution, it is necessary 
to set the derivative of problem (4) equal to zero, which is: 
𝑛
∑

𝜔(𝑒𝑖(𝒗))
𝜕𝑒𝑖(𝒗) = 0,  for 𝑗 = 1, 2,… , 𝑝, (5)
𝑖=1 𝜕𝑣𝑗
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where 𝜔 (

𝑒𝑖(𝒗)
)

= 𝑑𝛯(𝑒𝑖(𝒗))
𝑑𝑒𝑖(𝒗)

 is called influence function. Furthermore,
Eq.  (5) can be rewritten as: 
𝑛
∑

𝑖=1
𝜓(𝑒𝑖(𝒗))𝑒𝑖(𝒗)

𝜕𝑒𝑖(𝒗)
𝜕𝑣𝑗

= 0, 𝑗 = 1, 2,… , 𝑝, (6)

where 𝜓 (

𝑒𝑖(𝒗)
) is called the weight function and is defined as

𝜓 (𝑒(𝒗)) = 𝜔(𝑒(𝒗))
𝑒(𝒗)

=
𝛯′(𝑒(𝒗))
𝑒(𝒗)

.

Three main conditions ensure that the objective function has a 
unique solution and its optimization is computationally efficient. First, 
it should have a bounded influence function. Second, to ensure a unique 
minimum, the objective function being minimized should be convex 
in the parameter vector. However, even for non-convex problems like 
NMF, IRLS can be used to find a local minimum. Third, the objective 
function should have a non-zero gradient, avoiding the need to search 
the entire parameter space [34]. Under these conditions, the objective 
(6) is the solution of the following iterative reweighted problem: 

min
𝒗

𝑛
∑

𝑖=1
𝜓(𝑒𝑖(𝒗)[𝑡−1])𝑒𝑖(𝒗)2, (7)

where 𝑒𝑖(𝒗)[𝑡−1] represents the reconstruction error of the (𝑡 − 1)th 
iteration. The process of solving problem (7) can be broken down 
into two steps for each iteration. Firstly, treat the weight 𝜓(𝑒𝑖(𝒗)[𝑡−1])
as a fixed value, and then choose the optimal solution based on the 
specific form of the problem (7). Secondly, recalculate the weight 
value of 𝜓(𝑒𝑖(𝒗)[𝑡−1]) based on the current reconstructed error 𝑒𝑖(𝒗)[𝑡]. A 
connection was established between the iterative reweighted algorithm 
and NMF, regardless of the loss function used, in [32]. More precisely, 
the NMF loss function and ‖𝒙𝑖−𝑾 𝒉𝑖‖ can be considered as 𝛯(.) function 
and 𝑒𝑖 in Eq.  (4), respectively. Thus, Eq. (1) can be rewritten as:

min
𝑾 ,𝑯

𝑛
∑

𝑖=1
𝑑𝑖‖𝒙𝑖 −𝑾 𝒉𝑖‖2 = Tr[(𝑿 −𝑾𝑯)𝑫 (𝑿 −𝑾𝑯)⊤],

s.t. 𝑾 ,𝑯 ≥ 0, (8)

where 𝑑𝑖 = 𝜓(‖𝒙𝑖−𝑾 𝒉𝑖‖[𝑡−1]) is a coefficient computed in each iteration 
according to Eq.  (6) and using the residue value in the previous 
iteration. Consequently, we can determine a diagonal matrix 𝑫, which 
𝐷𝑖𝑖 = 𝑑𝑖 and rewrite the update rules (3) in a weighted form as follows: 

𝑾 ← 𝑾 ⊙ 𝑿𝑫𝑯⊤

𝑾𝑯𝑫𝑯⊤ , 𝑯 ← 𝑯 ⊙ 𝑾 ⊤𝑿𝑫
𝑾 ⊤𝑾𝑯𝑫

. (9)

2.3. L2,1 nonnegative matrix factorization

The basic NMF model is sensitive to noise and outliers because it 
relies on squared reconstruction errors in its loss function. Large noise 
or outliers can significantly influence these errors, biasing the decom-
position towards explaining them [32]. To improve the robustness of 
NMF, Kong et al. [13] introduced a more robust 𝐿2,1-NMF, wherein 
the Frobenius norm was substituted with the 𝐿2,1 norm to quantify the 
reconstructed errors. The objective function of 𝐿2,1-NMF can be defined 
as follows:

min
𝑾 ,𝑯

‖𝑿 −𝑾𝑯‖2,1 =
𝑛
∑

𝑖=1
‖𝒙𝑖 −𝑾 𝒉𝑖‖, s.t. 𝑾 ,𝑯 ≥ 0,

where ‖.‖2,1 denotes the 𝐿2,1-norm. The 𝐿2,1-norm of the given matrix 
𝑴 ∈ R𝑚×𝑛 is defined as ‖𝑴‖2,1 =

∑𝑛
𝑖

√

∑𝑚
𝑗 𝑀

2
𝑗𝑖. Observe that 𝐿2,1-

NMF uses the original reconstructed error ‖𝒙𝑖 − 𝑾 𝒉𝑖‖, and removes 
the square. Consequently, 𝐿2,1-NMF is capable of handling noise and 
outliers more effectively than the standard NMF. In addition, Kong 
et al. developed an effective iterative updating algorithm for solving 
𝐿2,1-NMF using Eq. (9) with 𝑫 being:

𝐷𝑖𝑖 =
1

[𝑡−1]
.

‖𝒙𝑖 −𝑾 𝒉𝑖‖

4 
2.4. Cauchy nonnegative matrix factorization

In standard NMF, a Gaussian distribution is assumed, whereas in 
𝐿2,1-NMF, a Laplacian distribution is considered to model the noise. 
Xiong et al. [33] propose to use a Cauchy distribution to model noise, 
represented as: 

𝑝
(

𝒙𝑖 ||𝑾 𝒉𝑖
)

∼ 1
𝛾

1

1 +
(

‖𝒙𝑖−𝑾 𝒉𝑖‖
𝛾

)2
, (10)

where 𝛾 is the scale parameter that determines the half-width at half-
maximum (HWHM). By examining Eq. (10), it is evident that when 
there is a substantial difference between the observed values and 
the correct value (i.e., ‖𝒙𝑖 − 𝑾 𝒉𝑖‖ is large), the likelihood of noise 
will decrease significantly (due to its presence in the denominator). 
Consequently, the model tends to be more resistant to noise. Using 
the idea of maximizing the log-likelihood (MLE), it is possible to fit 
the observations correctly into the noise model given by Eq.  (10). 
Incorporating non-negative constraints of 𝑾 ≥ 0 and 𝑯 ≥ 0 leads 
to the formulation of the Cauchy-NMF model:

min
𝑾 ,𝑯

‖𝑿 −𝑾𝑯‖2,𝑐𝑎𝑢 =
𝑛
∑

𝑖=1
ln(‖𝒙𝑖 −𝑾 𝒉𝑖‖2 + 𝛾2) s.t. 𝑾 ,𝑯 ≥ 0,

which can be solved via the iterative reweighted algorithm. The
weighted iterative updating rules can be derived from Eqs. (9), where 
𝑫 is:
𝐷𝑖𝑖 =

1
‖𝒙𝑖 −𝑾 𝒉𝑖‖2 + 𝛾2

.

3. Proposed model: iDRNMF

Over time, several robust NMF models have been developed, mainly 
characterized by the chosen objective function that evaluates the qual-
ity of an approximation through a specific distance between 𝑾𝑯 and 
𝑿. The selection of this objective function is usually determined by 
the assumed noise model or statistics on the data matrix 𝑿. Typically, 
users either manually select the objective function in an ad hoc manner 
or it is automatically chosen using cross-validation, where training 
is performed on a part of the input data matrix and testing on the 
remaining entries [35]. Nevertheless, with these methodologies, an 
inappropriate choice of the objective function might result in an NMF 
solution that substantially diverges from the intended answer. Address-
ing this challenge involves designing an NMF model that is robust 
to different types of noise distributions and suitable across various 
applications.

3.1. Instance-wise distributionally robust NMF

This section introduces the instance-wise Distributionally Robust 
Nonnegative Matrix Factorization (iDRNMF) within a multi-objective 
framework, aiming to learn a robust data representation at the instance 
level. The proposed model is designed to handle a wide range of noise 
with different distributions, and its unified framework is capable of 
encompassing any objective function found in distributionally robust 
literature. Notably, in contrast to entry-wise models (e.g., 𝐿1-NMF [14], 
Huber-NMF [16], CIM-NMF [15], and Cauchy NMF [19]), the proposed 
instance-wise model treats each column of the data matrix 𝑿 as an 
independent sample, conducting calculations based on this premise. 
To be specific, we define general loss function ‖.‖2,𝜏 which applies 𝐿2
norm on each column of 𝑬 = 𝑿−𝑾𝑯 independently and subsequently 
computing the desired loss 𝜏 on the results. It is assumed that 𝜏 is asso-
ciated with a probability distribution, allowing ‖.‖2,𝜏 to accommodate 
a specific noise distribution. Given that the noise model on the data is 
unknown but corresponds to a distribution associated with a 𝜏 ∈ 𝛺, a 
dynamic weighted sum of different objective functions is considered, 
with the weights assigned to these objective functions being learned. 
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Therefore, the proposed solution is robust to different types of noise 
distributions, termed as distributionally robust, and can be tackled by 
optimizing a weighted sum of the different objective functions. In a 
min–max formulation, the goal is to minimize a worst-case expected 
loss function over a probabilistic ambiguity set 𝛺 as follows: 

min
𝑾 ,𝑯

max
𝝀

∑

𝜏∈𝛺
𝜆𝜏‖𝑿 −𝑾𝑯‖2,𝜏 , s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1, (11)

where 𝝀 ∈ R|𝛺| is a weight vector and 𝜆𝜏 is weight for loss 𝜏. In 
this paper, we use 𝛺 = {1, 2, 𝑐𝑎𝑢}, which makes our model robust to 
Laplacian, Gaussian, and Cauchy distributions and a mixture of them. 
So, we could rewrite Eq. (11) as follows:

min
𝑾 ,𝑯

max
𝝀

𝜆1‖𝑿 −𝑾𝑯‖2,1 + 𝜆2‖𝑿 −𝑾𝑯‖

2
2,2 + 𝜆𝑐𝑎𝑢‖𝑿 −𝑾𝑯‖2,𝑐𝑎𝑢,

(12)
s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1.

where 𝝀 = {𝜆1, 𝜆2, 𝜆𝑐𝑎𝑢}. We can express the objective function (12) in 
an instance-wise representation as follows:

min
𝑾 ,𝑯

max
𝝀
𝜆1

𝑛
∑

𝑖=1
‖𝒙𝑖 −𝑾 𝒉𝑖‖ + 𝜆2

𝑛
∑

𝑖=1
‖𝒙𝑖 −𝑾 𝒉𝑖‖2

+ 𝜆𝑐𝑎𝑢
𝑛
∑

𝑖=1
ln(‖𝒙𝑖 −𝑾 𝒉𝑖‖2 + 𝛾2), (13)

s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1.

To optimize this multi-objective formulation, it is imperative to reduce 
the total loss in each iteration, with particular attention given to min-
imizing the objective with the highest loss. This approach effectively 
addresses worst-case scenarios. Due to the presence of a square in the 
Frobenius norm, it is evident that the ‖.‖2,2 norm yields significantly 
higher residue and ‖.‖2,𝑐𝑎𝑢 consistently lower ones in all iterations. 
This characteristic makes it hard to transition smoothly between objec-
tive functions throughout the iterations until convergence is achieved. 
Therefore, it is essential to scale the objectives to establish a meaningful 
linear combination, ensuring that each term in the sum carries equal 
importance. This adjustment is particularly critical for our iDRNMF 
model as it facilitates the generation of solutions with minimal error 
across all objectives, rather than prioritizing individual ones. Conse-
quently, these solutions inherit superior qualities from those generated 
by various single-objective models. Similar to the DRNMF [24] model, 
we use the following procedure to scale different objective functions.

Initially, the problems 𝜁𝜏= min𝑾 ,𝑯≥0 ‖𝑿−𝑾𝑯‖2,𝜏 for 𝜏 ∈ {1, 2, 𝑐𝑎𝑢}
are solved. Subsequently, each objective will be normalized using 
the corresponding error 𝜁𝜏 . We then replace (13) by substituting the 
objectives with their normalized forms:

min
𝑾 ,𝑯

max
𝝀

𝜆1𝜖1
𝑛
∑

𝑖=1
‖𝒙𝑖 −𝑾 𝒉𝑖‖ + 𝜆2𝜖2

𝑛
∑

𝑖=1
‖𝒙𝑖 −𝑾 𝒉𝑖‖2

+ 𝜆𝑐𝑎𝑢𝜖𝑐𝑎𝑢
𝑛
∑

𝑖=1
ln(‖𝒙𝑖 −𝑾 𝒉𝑖‖2 + 𝛾2),

s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1, (14)

where, for simplicity, 𝜖𝜏 = 1
𝜁𝜏 . Notice that we use normalized objec-

tive functions because otherwise, in most cases, the above problem 
amounts to minimizing a specific objective corresponding to the one 
with the largest value. Due to this design, the proposed NMF model (14) 
balances the importance between all objective functions. This accom-
plishment stems from its ability to accurately model the ambiguity set’s 
distribution and maintain robustness to varying noise distributions. 
Consequently, this model can provide a more reliable and generalizable 
representation across diverse scenarios. However, due to the inherent 
difficulty of optimizing the non-convex and non-linear objective (14), 
we reformulate the model as an iteratively reweighted problem.
5 
3.2. Iterative reweighted iDRNMF

In Section 2.2, we presented an iterative reweighted algorithm and 
proved that based on it, we can convert any objective function into a 
weighted basic NMF. Therefore, by utilizing the reweighted framework 
(8), our multi-objective formulation (14) can also be converted as 
follows: 

min
𝑾 ,𝑯

max
𝝀

𝑛
∑

𝑖=1
𝑑(𝛺)
𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2, s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1 (15)

where 𝑑(𝛺)
𝑖  is an instance-weight and calculated according to (7) as 

follows:

𝑑(𝛺)
𝑖 =

∑

𝜏∈𝛺
𝜆𝜏𝜖𝜏𝜓𝜏 (‖𝒙𝑖 −𝑾 𝒉𝑖‖[𝑡−1]) =

∑

𝜏∈𝛺
𝜆𝜏𝜖𝜏𝑑

(𝜏)
𝑖

Indeed, in problem (15) each term of the objective function is assigned 
a 𝑑(𝜏)𝑖  weight, consequently, we can rewrite it as:

min
𝑾 ,𝑯

max
𝝀

∑

𝜏∈𝛺
𝜆𝜏𝜖𝜏

𝑛
∑

𝑖=1
𝑑(𝜏)𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2, s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1,

 where the sample weight is 𝑑(𝜏)𝑖 = 𝜓𝜏 (‖𝒙𝑖−𝑾 𝒉𝑖‖[𝑡−1]). If 𝛺 = {1, 2, 𝑐𝑎𝑢}, 
we have:

min
𝑾 ,𝑯

max
𝝀
𝜆1𝜖1

𝑛
∑

𝑖=1
𝑑(1)𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2 + 𝜆2𝜖2

𝑛
∑

𝑖=1
𝑑(2)𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2

+ 𝜆𝑐𝑎𝑢𝜖𝑐𝑎𝑢
𝑛
∑

𝑖=1
𝑑(𝑐𝑎𝑢)𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1,

where 𝑑(1)𝑖 = 1
‖𝒙𝑖−𝑾 𝒉𝑖‖

, 𝑑(2)𝑖 = 1, and 𝑑(𝑐𝑎𝑢)𝑖 = 1
‖𝒙𝑖−𝑾 𝒉𝑖‖2+𝛾2

. Finally, we 
can rearrange the formula as follows:

min
𝑾 ,𝑯

max
𝝀

𝑛
∑

𝑖=1
(𝜆1𝜖1𝑑

(1)
𝑖 + 𝜆2𝜖2 + 𝜆𝑐𝑎𝑢𝜖𝑐𝑎𝑢𝑑

(𝑐𝑎𝑢)
𝑖 )‖𝒙𝑖 −𝑾 𝒉𝑖‖2

=
𝑛
∑

𝑖=1
𝑑(𝛺)
𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2

s.t. 𝑾 ,𝑯 ,𝝀 ≥ 0, ‖𝝀‖1 = 1, (16)

where 𝑑(𝛺)
𝑖 = 𝜆1𝜖1𝑑

(1)
𝑖 + 𝜆2𝜖2 + 𝜆𝑐𝑎𝑢𝜖𝑐𝑎𝑢𝑑

(𝑐𝑎𝑢)
𝑖 . It is important to mention 

that, we can expand 𝛺 to encompass any preferred distribution and 
utilize this unified weighted formulation to manage it.

3.3. Optimization

Since the cost function of our iDRNMF model is not convex in 𝑾
and 𝑯 together, optimizing it may encounter challenges. As such, to 
achieve successful optimization of the factorization, it is possible to 
split this problem into two smaller sub-problems, both of which are 
convex in nature. To optimize, problem (16) can be addressed using 
alternating minimization (Algorithm 1), which enables us to iteratively 
update the variables until a satisfactory solution is achieved. In each 
iteration, we employ the Multiplicative Update method to update one 
variable while keeping the other fixed.

3.3.1. Updating factors
To achieve the update rules for 𝑾  and 𝑯 factors, the objective 

function (16) can be rewritten in the trace form to be solved by 
the Multiplicative Update Rule (MUR) method in a weighted NMF 
framework as follows:

min
𝑾 ,𝑯

𝑛
∑

𝑖=1
𝑑(𝛺)
𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2 = Tr

[

(𝑿 −𝑾𝑯) (𝑿 −𝑾𝑯)⊤
]

,

s.t. 𝑾 ,𝑯 ≥ 0 (17)

where 𝑖𝑖 = 𝑑(𝛺)
𝑖  can be computed as 

𝑖𝑖 =
𝜆1𝜖1

‖𝒙 −𝑾 𝒉 ‖

+ 𝜆2𝜖2 +
𝜆𝑐𝑎𝑢𝜖𝑐𝑎𝑢

2 2
. (18)
𝑖 𝑖 ‖𝒙𝑖 −𝑾 𝒉𝑖‖ + 𝛾
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Table 1
The count of arithmetic operations for each iteration in Basic NMF and iDRNMF.
 Method Updating 𝑾 Updating 𝑯 Updating  Overall 
 
NMF

fladd 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 –
𝑂(𝑚𝑛𝑟)

 
 flmlt 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 + 𝑚𝑟 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 + 𝑛𝑟 –  
 fldiv 𝑚𝑟 𝑛𝑟 –  
 
iDRNMF

fladd 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 𝑚𝑛𝑟 + 2𝑛

𝑂(𝑚𝑛𝑟)

 
 flmlt 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 + 𝑚𝑛 + (𝑛 + 𝑚)𝑟 𝑚𝑛𝑟 + (𝑚 + 𝑛)𝑟2 + 𝑚𝑛 + 2𝑛𝑟 𝑚𝑛𝑟 + 𝑚𝑛 + 3𝑛  
 fldiv 𝑚𝑟 𝑛𝑟 2𝑛  
 flsub – − 𝑚𝑛  
The objective function proposed in (17) has the same mathematical 
form as the weighted objective function given in (8). Because of this 
structural similarity, we can apply the weighted MURs derived in (9) 
to the proposed objective function (17) as follows: 

𝑾 ← 𝑾 ⊙ 𝑿𝑯⊤

𝑾𝑯𝑯⊤ , (19)

𝑯 ← 𝑯 ⊙ 𝑾 ⊤𝑿
𝑾 ⊤𝑾𝑯

. (20)

It is noteworthy to mention that the initialization of the 𝑾  and 𝑯
factors is carried out randomly.

3.3.2. Updating weights
The main idea to solve the optimization problem (11) is to mini-

mize the worst-case in each iteration. Therefore, we should find the 
maximum value among the objective functions and try to minimize 
it in the next iteration. It means that in each iteration, although all 
objective functions are reduced, the largest one should be given more 
importance at the next iteration. For this reason, we use a Frank–Wolfe 
algorithm, which is known as the conditional gradient method [24,36]. 
Accordingly, we initialize the algorithm with 𝜆[0]𝜏 = 1

|𝛺|

 for all 𝜏 ∈ 𝛺. 
Let define 𝑝∗ = argmax𝜏∈𝛺 ‖𝒙𝑖 −𝑾 𝒉𝑖‖2,𝜏 and 𝜆[𝑡]∗  as the vector with a 
single non-zero entry equal to one at position 𝑝∗ in 𝑡th iteration. We 
update all 𝜆𝜏 in (𝑡 + 1)th iteration based on the following equation: 
𝜆[𝑡+1] = (1 − 𝜂)𝜆[𝑡] + 𝜂𝜆[𝑡]∗ , (21)

According to this formula and the fact that ‖𝝀‖1 = 1, we can see 
that the corresponding 𝝀 to the maximum value among loss functions 
will be increased in the next iteration, while it should be decreased 
for the other loss functions. We can control the rate of changes with 
parameter 𝜂, where a larger value causes more emphasis to be paid to 
the maximum loss function, and on the contrary, smaller values cause 
slower changes in the amount of attention to it. Notice in all cases 
𝜂 ∈ [0, 1]. However, a better choice can be that the value of 𝜂 is not 
fixed and changes dynamically in the different iterations. To be specific, 
𝜂[𝑡] should have a larger value in the beginning and slightly decrease 
during subsequent iterations until it finally decays. In this way, the 
model initially pays more attention to the larger residue and while 
minimizing it, avoids the complete dominance of one cost function over 
the others. Additional discussions on how to choose 𝜂 and its effect on 
model convergence will be presented in Section 4.7.

In our model, we adopt a strategy commonly employed in min–
max optimization problems, particularly in game theory contexts. By 
performing only one update of the minimizing 𝑾  and 𝑯 factors before 
updating the maximizing weights 𝝀, we follow a sequential updating 
process aimed at guiding convergence towards the saddle point. This 
strategy allows each player to react to the strategy of the others 
in a controlled manner, facilitating efficient optimization. However, 
it is important to acknowledge that excessive updates of one player 
before the other can introduce oscillations and instability, potentially 
deviating from the desired saddle point [37]. Hence, we opted for this 
balanced updating scheme to ensure stability and convergence in our 
optimization process. The proposed iterative algorithm for updating 
the variables in our iDRNMF formulation is presented in Algorithm 1. 
The source code implementation of the proposed method is publicly 
available at https://github.com/barkhoda/iDRNMF.
6 
Algorithm 1 instance-wise Distributionally Robust NMF (iDRNMF)

Input: data matrix 𝑿, latent factor 𝑟, a finite ambiguity set 𝛺;
Output: basis matrix 𝑾  and representation matrix 𝑯 ;

1: Initialize 𝑾  and 𝑯 randomly, 𝜆𝜏 = 1
|𝛺|

,∀𝜏 ∈ 𝛺; 
2: while convergence not reached do 
3: Update instance weight matrix  according to (18); 
4: Update basis matrix 𝑾  according to (19); 
5: Update representation matrix 𝑯 according to (20); 
6: Update weights 𝝀 according to (21);
7: end while

3.4. Complexity analysis

In this section, we will delve into the computational complexity of 
the proposed iDRNMF algorithm, expressing its complexity using the 
big 𝑂 notation. By comparing the update rules of iDRNMF (Eqs. (19) 
and (20)) with those of standard NMF (Eq. (3)), we observe that 
the additional computational cost primarily arises from computations 
related to . It is worth noting that  is a diagonal matrix, which 
effectively reduces the computational cost. For better understanding, 
we consider four types of arithmetic operations: floating-point addition 
(fladd), floating-point multiplication (flmlt), floating-point subtraction 
(flsub), and floating-point division (fldiv). Assume the number of data 
points is 𝑛, the number of features is 𝑚, the number of factors is 𝑟, 
and 𝛺 = {1, 2, 𝑐𝑎𝑢}. Based on Eq. (18), the most frequent operation to 
compute  is multiplication, with the cost of calculating each entry 𝑖𝑖
equating to 𝑚𝑟 + 𝑚 + 3. Additionally, computing 𝑖𝑖 involves 𝑚𝑟 + 2
additions, 𝑚 subtraction, and 2 divisions. These costs apply to all 𝑛
samples, as outlined in Table  1, which presents the final computation 
cost for updating . For a diagonal matrix , the operation 𝑿
signifies that each entry 𝐷𝑖𝑖 must be multiplied with all entries in 
column 𝒙𝑖. Therefore, for 𝑿 ∈ R𝑚×𝑛, this operation requires 𝑚 × 𝑛
multiplication. Consequently, the complexity of updating 𝑾  and 𝑯 in 
our iDRNMF formulation, based on Eqs. (19) and (20), is not signifi-
cantly higher than that of the basic NMF method. Both methods have 
a complexity order 𝑂(𝑚𝑛𝑟) in each iteration. As a result, if the total 
number of iterations is 𝑡, the overall cost for both NMF and iDRNMF is 
𝑂(𝑡𝑚𝑛𝑟). Notably, the algorithm also scales well for sparse matrices, in 
(nnz(𝑿)𝑟) operations, where nnz(𝑿) is the number of non-zero entries 
in 𝑿, as for standard NMF. As illustrated in Table  1, the computational 
algorithm for iDRNMF is surprisingly straightforward, nearly matching 
the computational cost of standard NMF.

4. Experimental results

This section examines the robustness and efficiency of the proposed 
model by comparing it to nine cutting-edge robust models includ-
ing 𝐿2,1–NMF [13], FroNMF [31], CauchyNMF [33], HxNMF [32], 
rCIM-NMF [15], HuberNMF [15], Elastic NMF [38], Deep Autoencoder 
NMF (DANMF) [39], and DR-NMF [24] on seven well-known datasets. 
Furthermore, this study provides a comprehensive discussion on the 

https://github.com/barkhoda/iDRNMF
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interpretation of results and the convergence analysis, in addition to 
a description of the experimental settings. To mitigate the impact 
of initial values, we execute each of the compared models multiple 
times with diverse initializations. Specifically, we run each algorithm 
five times and present the average results. Also, the multiplicative 
updating rules for factor matrices are executed in 300 iterations. The 
parameters for each algorithm were established based on the original 
articles where the methods were initially proposed. The number of 
latent components is defined to be equal to the number of clusters in 
each dataset, and we employ the original k-means clustering method 
on the representation matrix 𝑯 for evaluating the clustering perfor-
mance. Two frequently used evaluation criteria are used to evaluate 
the performance of clustering, including clustering accuracy (ACC) 
and normalized mutual information (NMI). In addition, we conduct 
tests using several noise models, such as Gaussian, Laplacian, Cauchy, 
and a combination of these, to assess and compare the effectiveness 
of the proposed data representation model. It is worth mentioning 
that our model is an auto-weighted method that does not require any 
hyperparameter tuning. 

4.1. Datasets

In the experiments, we utilize seven real-world image datasets: 
two face image datasets (Yale and ORL), an object image dataset 
(COIL20), a handwriting image dataset (MNIST), a clothing image 
dataset (Fashion MNIST), and two medical datasets (OrganA-MNIST 
and Blood-MNIST), which have been extensively employed to evaluate 
the efficacy of matrix factorization models. Fig.  1 illustrates the selected 
samples of images in each dataset. We convert each image dataset into 
a data matrix, where the dimensions of the matrix correspond to the 
number of pixels and the number of samples in the dataset. The Yale 
face dataset consists of 15 individuals, with each person captured in 
11 distinct images under different conditions, and for our tests, we 
resize each image to dimensions of 32 × 32 pixels. The ORL dataset 
consists of 400 images of 40 distinct individuals, with each person 
represented by 10 images captured at various instances with diverse 
lighting conditions and facial expressions, and we resize each image to 
dimensions of 32 × 32 pixels. The COIL20 object image dataset consists 
of 20 distinct objects captured from every perspective in a complete 
360-degree rotation, and we adjust the size of each image to 32 × 32 
pixels. The MNIST dataset originally contains 70,000 digital images 
of handwritten digits, and we employ a random selection process to 
choose 100 photos for each numerical digit, spanning from ‘0’ to ‘9’, 
creating a dataset of 1000 images. The Fashion-MNIST dataset serves 
as a replacement for the original MNIST dataset and consists of 60,000 
training and 10,000 test images, each grayscale with dimensions of 
28 × 28 pixels, representing a sample associated with one of 10 cat-
egories, and we generate the dataset by selecting 100 random samples 
from each class. OrganA-MNIST [40] is a dataset consisting of 58,830 
abdominal CT images, each resized to 28 × 28 pixels, with a total of 
11 organ classes. It is designed for medical image classification and 
deep learning applications in organ segmentation and identification. 
Blood-MNIST [40] is an RGB dataset consisting of 17,092 blood cell 
microscopy images, each resized to 28 × 28 × 3 pixels, categorized 
into 8 different blood cell types. This dataset is useful for hematology 
research and deep learning tasks related to blood cell classification. 
Table  2 summarizes the main information about these datasets.

4.2. The combination of noise with different distributions

When we want to evaluate the robustness and efficacy of a distribu-
tionally robust model that covers noise distributions in the ambiguity 
set 𝛺, it is common to contaminate clean data with one of the cov-
ered noise distributions independently and assess the performance of 
the model. However, in the real world, noise does not obey a pure 
distribution and usually, it contaminates the data as a combination of 
7 
Fig. 1. Selected samples of images in the tested datasets; from to bottom: Yale, ORL, 
COIL20, MNIST, Fashion-MNIST, OrganA-MNIST, and Blood-MNIST.

different distributions. So, it is more realistic to evaluate the robustness 
of the model with these types of noise. Let 

𝑵̂ =
∑

𝜏∈𝛺

𝑵𝜏
‖𝑵𝜏‖𝐹

, (22)

where 𝑵𝜏 is noise constructed using the distribution corresponding to 
𝜏 ∈ 𝛺. We set 

𝑵 = 𝜚
‖𝑿‖𝐹

‖𝑵̂‖𝐹
𝑵̂ , 0 < 𝜚 < 1, (23)

where 𝜚 is the noise intensity parameter. Finally, 𝑿̂ = max(0,𝑿 + 𝑵)
where 𝑿 is clean data and 𝑿̂ is a low-rank matrix to which had been 
contaminated with noise.

4.3. Clustering results

Tables  3–9 showcase the clustering results across seven image 
datasets in the four distinct noisy conditions: Gaussian, Laplacian, 
Cauchy, and their combinations. To explore the combined scenar-
ios, we consider four combinations, namely Gaussian and Laplacian 
(G+L), Gaussian and Cauchy (G+C), Laplacian and Cauchy (L+C), and 
the combination of all noises (G+L+C). In each table, the top three 
performances are highlighted in boldface, underlined, and double-
underlined, respectively. Additionally, we calculate the average rank-
ing for all methods within each dataset. Remarkably, iDRNMF con-
sistently achieves the top ranking across all datasets and noise cases. 
An intriguing observation is that iDRNMF consistently outperforms 
other methods, which have acceptable performance in some scenarios 
but struggle in others. iDRNMF shows a significantly better average 
ranking in all cases. For instance, in Table  7, Huber yields the best NMI 
for L+C noise, but its performance in other cases is less satisfactory, 
resulting in a considerably high average ranking. In summary, our 
proposed method exhibits superior performance, consistently ranking 
first across all datasets and noise cases. Notably, our approach shows its 
capability to handle a wide range of noise models, particularly address-
ing mixtures of various noises commonly encountered in real-world 
scenarios.

In distributionally robust models, the exact noise distribution is 
unknown, but it is assumed to belong to an ambiguity set 𝛺. Conse-
quently, the model is anticipated to perform well for noise with any 
distribution 𝜏 ∈ 𝛺, without a guarantee of acceptable performance for 
other distributions. Nevertheless, due to our innovative combinational 
framework, we expect that our model exhibits acceptable performance 
even for noise with a distribution 𝜏́ ∉ 𝛺. To test this hypothesis, we 
evaluate our model against additive Poisson noise with the mean 𝜎, 
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Table 2
Details of real-world datasets under test.
 Dataset #instance #feature (dimension) #class Application  
 Yale 165 1024 (32 × 32) 15 Face recognition  
 ORL 400 1024 (32 × 32) 40 Face recognition  
 COIL20 1440 1024 (32 × 32) 20 Object recognition  
 MNIST 1000 784 (28 × 28) 10 Handwriting recognition 
 Fashion-MNIST 1000 784 (28 × 28) 10 Clothing recognition  
 OrganA-MNIST 58,830 784 (28 × 28) 11 Abdominal CT  
 Blood-MNIST 17,092 2352 (28 × 28 × 3) 8 Blood cell microscopy  
Table 3
The comparison results on the Yale dataset for different types of noise, evaluated based on NMI and ACC. The top three performances are 
highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G+L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.4285 0.4603 0.4533 0.4330 0.4898 0.4377 0.4396 5.00  
 Fro 0.4506 0.4389 0.4520 0.4352 0.4632 0.4364 0.4516 5.42  
 Cauchy 0.4136 0.4493 0.4448 0.4840 0.4992 0.4429 0.4524 4.71  
 Hx 0.4288 0.4617 0.4559 0.4720 0.4682 0.4620 0.4450 3.85  
 rCIM 0.4520 0.4658 0.4326 0.4208 0.4554 0.4359 0.4265 6.42  
 Huber 0.4526 0.4580 0.4440 0.4281 0.4533 0.4282 0.4351 6.28  
 Elastic 0.4467 0.4552 0.4481 0.4469 0.4890 0.4258 0.4331 5.85  
 DANMF 0.4297 0.4055 0.3902 0.4030 0.4026 0.4017 0.4290 9.28  
 DR-NMF 0.4671 0.4570 0.4252 0.4380 0.4513 0.4238 0.4156 7.14  
 iDRNMF 0.4914 0.4992 0.5049 0.4954 0.5131 0.4739 0.4912 1.00  
 

ACC

𝐿2,1 0.3806 0.4182 0.4061 0.3903 0.4364 0.3964 0.3879 5.00  
 Fro 0.4024 0.4024 0.4024 0.3867 0.4158 0.3903 0.4036 5.57  
 Cauchy 0.3697 0.3988 0.3952 0.4364 0.4703 0.4048 0.4125 5.00  
 Hx 0.3782 0.4121 0.4145 0.4255 0.4339 0.4133 0.3988 4.42  
 rCIM 0.4048 0.4327 0.3964 0.3782 0.4133 0.3842 0.3782 6.14  
 Huber 0.4121 0.4097 0.3988 0.3794 0.4000 0.3806 0.3915 6.28  
 Elastic 0.4061 0.4242 0.3939 0.3891 0.4436 0.3818 0.3830 5.42  
 DANMF 0.4000 0.3636 0.3515 0.3636 0.3575 0.3636 0.3757 9.42  
 DR-NMF 0.4085 0.4206 0.3842 0.3915 0.4012 0.3758 0.3709 6.71  
 iDRNMF 0.4230 0.4509 0.4616 0.4388 0.4727 0.4291 0.4376 1.00  
Table 4
The comparison results on the ORL dataset for different types of noise, evaluated based on NMI and ACC. The top three performances are 
highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G+L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.7148 0.7321 0.7322 0.7406 0.7257 0.7208 0.7157 5.57  
 Fro 0.7193 0.7215 0.7371 0.7343 0.7210 0.7190 0.7213 6.00  
 Cauchy 0.7178 0.7156 0.7335 0.7438 0.7328 0.7269 0.7080 5.00  
 Hx 0.7065 0.7343 0.7320 0.7370 0.7308 0.7245 0.7156 5.85  
 rCIM 0.7089 0.7222 0.7311 0.7420 0.7279 0.7244 0.7244 5.57  
 Huber 0.7102 0.7242 0.7293 0.7462 0.7247 0.7236 0.7187 6.00  
 Elastic 0.7066 0.7187 0.7318 0.7475 0.7232 0.7291 0.7215 5.71  
 DANMF 0.7092 0.7157 0.7197 0.7182 0.7137 0.7157 0.7087 9.28  
 DR-NMF 0.7168 0.7324 0.7299 0.7400 0.7243 0.7326 0.7298 4.71  
 iDRNMF 0.7182 0.7452 0.7379 0.7503 0.7321 0.7423 0.7380 1.28  
 

ACC

𝐿2,1 0.5580 0.5780 0.5795 0.5865 0.5735 0.5655 0.5405 6.21  
 Fro 0.5585 0.5670 0.5865 0.5785 0.5660 0.5515 0.5440 7.57  
 Cauchy 0.5670 0.5540 0.5885 0.5915 0.5725 0.5670 0.5385 5.57  
 Hx 0.5455 0.5860 0.5775 0.5835 0.5770 0.5630 0.5525 6.50  
 rCIM 0.5575 0.5710 0.5895 0.5910 0.5770 0.5730 0.5635 3.85  
 Huber 0.5495 0.5725 0.5885 0.5980 0.5680 0.5645 0.5500 5.57  
 Elastic 0.5475 0.5690 0.5795 0.5910 0.5745 0.5720 0.5505 5.78  
 DANMF 0.5475 0.5800 0.5400 0.5700 0.5650 0.5675 0.5500 7.57  
 DR-NMF 0.5645 0.5935 0.5780 0.5840 0.5610 0.5740 0.5645 4.78  
 iDRNMF 0.5645 0.6055 0.5885 0.5980 0.5790 0.5925 0.5810 1.57  
comparing its performance with other methods. The results of simu-
lations for this noise model are comprehensively presented in Table 
10. As anticipated, our iDRNMF shows a very good performance, and 
if we pay attention to the average rank obtained, although it has 
decreased compared to the noise distributions in the 𝛺 set, it still has 
a privileged position compared to other methods. Although the DR-
NMF model includes the Kullback–Leibler loss that matches the Poisson 
distribution, the proposed model achieves nearly identical results. This 
aligns with the expected behavior, reinforcing the adaptability of our 
8 
model even in scenarios with noise distributions beyond the originally 
considered set 𝛺.

4.4. Analysis of iDRNMF terms contribution

The proposed objective function is designed as a weighted sum 
multi-objective cost function, where each loss has a significant impact 
on the final results. The model aims to minimize the worst-case ex-
pected loss function in each iteration. Consequently, the iDRNMF model 
increases the coefficient of the largest loss to pay more attention to it. 
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Table 5
The comparison results on the COIL20 dataset for different types of noise, evaluated based on NMI and ACC. The top three performances are 
highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G + L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.7625 0.7590 0.7361 0.7227 0.7367 0.7275 0.7266 6.86  
 Fro 0.7820 0.7494 0.7281 0.7456 0.7426 0.7478 0.7651 4.57  
 Cauchy 0.7658 0.7034 0.7527 0.7284 0.7075 0.7274 0.7831 5.57  
 Hx 0.7650 0.7715 0.7331 0.7528 0.7524 0.7543 0.7516 3.71  
 rCIM 0.7537 0.7159 0.7398 0.7437 0.7572 0.7527 0.7499 5.29  
 Huber 0.7555 0.7341 0.7048 0.7383 0.7490 0.7572 0.7300 6.14  
 Elastic 0.7136 0.7368 0.7244 0.7302 0.7500 0.7529 0.7571 6.29  
 DANMF 0.7470 0.7572 0.7377 0.7380 0.7219 0.7284 0.7513 6.29  
 DR-NMF 0.7365 0.6929 0.7041 0.7193 0.7045 0.7548 0.7459 8.57  
 iDRNMF 0.7752 0.7935 0.7583 0.7607 0.7753 0.7593 0.7903 1.14  
 

ACC

𝐿2,1 0.6986 0.6965 0.6562 0.6569 0.6514 0.6521 0.6347 6.14  
 Fro 0.7215 0.6660 0.6326 0.6681 0.6611 0.6583 0.7069 5.00  
 Cauchy 0.6736 0.6090 0.6771 0.6715 0.6285 0.6472 0.6986 6.07  
 Hx 0.6785 0.6972 0.6556 0.6861 0.6729 0.6910 0.6951 3.50  
 rCIM 0.6639 0.6313 0.6549 0.6701 0.6438 0.6917 0.6861 6.43  
 Huber 0.6785 0.6715 0.6111 0.6715 0.6646 0.6951 0.6396 5.14  
 Elastic 0.6361 0.6528 0.6611 0.6583 0.6597 0.6854 0.6972 6.00  
 DANMF 0.6701 0.6701 0.6569 0.6722 0.6409 0.6340 0.6722 6.43  
 DR-NMF 0.6417 0.6062 0.6083 0.6389 0.6201 0.6764 0.6729 8.86  
 iDRNMF 0.6979 0.7368 0.6806 0.6799 0.6882 0.7042 0.7188 1.43  
Table 6
The comparison results on the MNIST dataset for different types of noise, evaluated based on NMI and ACC. The top three performances are 
highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G + L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.3605 0.3050 0.3902 0.3393 0.3375 0.3606 0.3501 5.86  
 Fro 0.4013 0.3535 0.3912 0.3765 0.3349 0.3323 0.3393 5.57  
 Cauchy 0.3546 0.3611 0.3444 0.3191 0.3655 0.3443 0.3958 4.93  
 Hx 0.3471 0.3639 0.3746 0.3461 0.3740 0.3349 0.3533 5.14  
 rCIM 0.3491 0.3540 0.4032 0.3833 0.3527 0.3132 0.3466 5.43  
 Huber 0.3364 0.3151 0.3444 0.3229 0.3366 0.3139 0.3522 7.79  
 Elastic 0.3566 0.3162 0.4022 0.3536 0.3314 0.3566 0.3625 4.14  
 DANMF 0.3610 0.3543 0.3987 0.3617 0.3622 0.3439 0.3643 3.86  
 DR-NMF 0.1175 0.2121 0.2441 0.2363 0.2118 0.1743 0.1626 10.0  
 iDRNMF 0.3897 0.3644 0.4041 0.3888 0.3805 0.3625 0.3942 1.29  
 

ACC

𝐿2,1 0.4570 0.3780 0.4840 0.4300 0.4280 0.4340 0.4590 5.79  
 Fro 0.4760 0.4350 0.4950 0.4700 0.4400 0.4030 0.4130 5.00  
 Cauchy 0.4470 0.4310 0.4300 0.4120 0.4720 0.4400 0.4880 5.79  
 Hx 0.4510 0.4420 0.4650 0.4300 0.4720 0.4440 0.4510 4.71  
 rCIM 0.4210 0.4340 0.5030 0.4840 0.4730 0.3850 0.4430 5.00  
 Huber 0.4280 0.3770 0.4400 0.4140 0.4250 0.4120 0.4460 7.71  
 Elastic 0.4590 0.4130 0.4980 0.4570 0.4200 0.4480 0.4670 4.43  
 DANMF 0.4540 0.4240 0.4800 0.4440 0.4520 0.4420 0.4350 5.57  
 DR-NMF 0.2370 0.3210 0.3420 0.3300 0.3030 0.2770 0.2630 10.0  
 iDRNMF 0.4840 0.4470 0.5050 0.4920 0.4790 0.4520 0.4950 1.00  
However, the remaining loss functions also have their specific impacts 
and act as regularization terms during optimization in various scenar-
ios. To analyze and demonstrate the contribution of each loss for input 
samples during the learning process, we conducted the iDRNMF model 
on the Yale dataset contaminated by Gaussian, Laplacian, Cauchy, 
and their combinations, separately. Specifically, 40% of pixels of all 
samples were contaminated, and the results are the average of 5 runs. 
The first three rows of Table  11 illustrate the NMI and ACC for the 
basis objective functions individually. The subsequent three rows show 
the results when iDRNMF runs with two of the objective functions in 
combination, and finally, the complete iDRNMF results are presented in 
the last row. As observed, each term positively impacts some scenarios, 
and combining these terms leads to superior performance in most cases. 
For instance, when the noise is Gaussian, the cases that incorporate 
the Frobenius norm in their multi-objective combination yield better 
results. This is also true for 𝐿2,1 and Cauchy when iDRNMF faces 
Laplacian and Cauchy noises, respectively. Based on the findings, it 
is evident that each term of the proposed objective function plays a 
crucial role in achieving a good solution, and removing any one of 
them would likely lead to a decrease in average performance. It is 
worth noting that this experiment, as an ablation study, demonstrates 
9 
the significance of each component within the proposed multi-objective 
cost function.

4.5. Robustness on various noise rates

In this section, we assess the robustness of iDRNMF through the 
application of a combination of noise (G+L+C) with varying rates 
(percentages of corrupted pixels) on the Yale dataset. The tasks can 
be challenging since they require filtering out plenty of outliers with 
large magnitudes to extract a clean subspace. The combinational noise 
is generated through a zero mean Gaussian distribution with a standard 
deviation of 5, a Zero Mean Laplacian distribution with a deviation 
parameter of 50, and Cauchy noise with a parameter 𝛾 = 1. The 
contamination levels range from 5% to 100%, representing the propor-
tion of samples affected by noise. Fig.  2 depicts the NMI and ACC of 
the proposed iDRNMF method in comparison to alternative methods, 
respectively. It is evident from the figures that, as the noise rate 
increases, the iDRNMF method consistently exhibits superior clustering 
results when compared to alternative methodologies. This observation 
underscores the heightened robustness and resilience of the proposed 
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Table 7
The comparison results on the Fashion-MNIST dataset for different types of noise, evaluated based on NMI and ACC. The top three performances 
are highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G+L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.4376 0.4576 0.4539 0.4464 0.4488 0.4658 0.4272 4.57  
 Fro 0.4590 0.4560 0.4348 0.4331 0.4427 0.4523 0.4375 6.00  
 Cauchy 0.4456 0.4437 0.4313 0.4593 0.4525 0.4364 0.4514 5.43  
 Hx 0.4446 0.4470 0.4476 0.4608 0.4557 0.4265 0.4487 4.71  
 rCIM 0.4644 0.4670 0.4445 0.4432 0.4204 0.4531 0.4448 4.71  
 Huber 0.4414 0.4410 0.4411 0.4351 0.4024 0.4671 0.4299 6.71  
 Elastic 0.4345 0.4613 0.4515 0.4552 0.4484 0.4442 0.4242 5.57  
 DANMF 0.4213 0.3684 0.4378 0.4145 0.4293 0.4207 0.4006 9.43  
 DR-NMF 0.4277 0.4485 0.4499 0.4364 0.4390 0.4498 0.4295 6.71  
 iDRNMF 0.4700 0.4751 0.4572 0.4696 0.4616 0.4603 0.4547 1.29  
 

ACC

𝐿2,1 0.4670 0.5022 0.5082 0.5180 0.4850 0.5132 0.4658 4.64  
 Fro 0.5008 0.5020 0.4872 0.5036 0.4850 0.4930 0.4984 5.50  
 Cauchy 0.4826 0.4954 0.4752 0.5122 0.4980 0.4880 0.4970 6.29  
 Hx 0.4862 0.4994 0.5008 0.5354 0.5116 0.4760 0.5102 4.29  
 rCIM 0.5050 0.5010 0.4948 0.5140 0.4686 0.4952 0.4968 5.00  
 Huber 0.4850 0.4916 0.4920 0.4970 0.4324 0.5094 0.4688 6.71  
 Elastic 0.4708 0.5072 0.5074 0.5166 0.4946 0.4922 0.4604 5.14  
 DANMF 0.4220 0.3830 0.4900 0.4320 0.4640 0.4780 0.4250 9.43  
 DR-NMF 0.4718 0.4886 0.5056 0.4896 0.4868 0.4966 0.4588 6.71  
 iDRNMF 0.5020 0.5146 0.5160 0.5294 0.5154 0.5184 0.5278 1.29  
Table 8
The comparison results on the OrganA-MNIST dataset for different types of noise, evaluated based on NMI and ACC. The top three performances 
are highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G+L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.5611 0.6077 0.5833 0.5466 0.6054 0.6204 0.5824 5.00  
 Fro 0.5911 0.6014 0.5987 0.6215 0.5155 0.5846 0.6032 5.14  
 Cauchy 0.5557 0.6296 0.6088 0.6035 0.5418 0.5914 0.5791 5.57  
 Hx 0.6162 0.5804 0.5599 0.5419 0.5612 0.5552 0.532 8.14  
 rCIM 0.5819 0.5663 0.5616 0.5452 0.5766 0.6152 0.5710 7.28  
 Huber 0.6095 0.5936 0.6103 0.6103 0.6004 0.5621 0.5714 5.14  
 Elastic 0.6026 0.5993 0.5952 0.5773 0.5800 0.5819 0.5554 6.42  
 DANMF 0.6149 0.5971 0.5526 0.5620 0.5848 0.5743 0.5905 6.14  
 DR-NMF 0.6066 0.6094 0.5556 0.6163 0.5958 0.6149 0.5598 5.12  
 iDRNMF 0.6493 0.6302 0.6390 0.6287 0.6539 0.6372 0.6292 1.00  
 

ACC

𝐿2,1 0.6200 0.6598 0.6291 0.6022 0.6452 0.6783 0.6658 5.86  
 Fro 0.6438 0.6487 0.6689 0.6820 0.5510 0.6484 0.6470 6.00  
 Cauchy 0.5823 0.6790 0.6943 0.6579 0.5800 0.6436 0.6415 5.57  
 Hx 0.6621 0.6345 0.6150 0.6171 0.6039 0.6267 0.6019 7.57  
 rCIM 0.6233 0.6604 0.5690 0.5994 0.6381 0.6798 0.6187 7.00  
 Huber 0.6655 0.6601 0.6761 0.6823 0.6661 0.6062 0.6154 5.29  
 Elastic 0.6341 0.6650 0.6522 0.6435 0.6313 0.6162 0.5872 6.86  
 DANMF 0.6729 0.6689 0.5826 0.6216 0.6773 0.6119 0.6556 5.14  
 DR-NMF 0.6599 0.6780 0.5951 0.7014 0.6422 0.6780 0.6410 4.71  
 iDRNMF 0.7005 0.6835 0.7100 0.7086 0.7037 0.6909 0.6777 1.00  
Fig. 2. NMI and ACC results on the Yale dataset with different combinational noise rates.
10 
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Table 9
The comparison results on the Blood-MNIST dataset for different types of noise, evaluated based on NMI and ACC. The top three performances 
are highlighted in boldface, underlined, and double-underlined, respectively.
 Method G L C G+L G+C L+C G+L+C Avg Rank 
 

NMI

𝐿2,1 0.3273 0.3459 0.3464 0.3473 0.3453 0.3250 0.3650 6.86  
 Fro 0.3490 0.3399 0.3337 0.3498 0.3403 0.3434 0.3320 7.00  
 Cauchy 0.3464 0.3430 0.3333 0.3486 0.3320 0.3443 0.3309 7.71  
 Hx 0.3475 0.3570 0.3565 0.3550 0.3224 0.3538 0.3408 5.14  
 rCIM 0.3647 0.3198 0.3305 0.3449 0.3434 0.3478 0.3602 6.71  
 Huber 0.3403 0.3563 0.3441 0.3465 0.3584 0.3681 0.3596 5.57  
 Elastic 0.3406 0.3665 0.3557 0.3492 0.3599 0.3475 0.3302 5.29  
 DANMF 0.3515 0.3603 0.3205 0.3540 0.3495 0.3612 0.3521 4.71  
 DR-NMF 0.3459 0.3597 0.3530 0.3228 0.3467 0.3634 0.3692 5.00  
 iDRNMF 0.3669 0.3742 0.3639 0.3605 0.3609 0.3722 0.3701 1.00  
 

ACC

𝐿2,1 0.4439 0.4900 0.4690 0.4567 0.4713 0.4655 0.5064 6.71  
 Fro 0.4725 0.4439 0.4275 0.4742 0.4737 0.4696 0.4754 7.28  
 Cauchy 0.4836 0.4707 0.4456 0.4778 0.4550 0.4760 0.4696 7.21  
 Hx 0.4713 0.4924 0.5005 0.4702 0.4497 0.4935 0.4521 6.21  
 rCIM 0.5011 0.4515 0.4456 0.4941 0.4678 0.4672 0.5023 6.07  
 Huber 0.4713 0.4754 0.4853 0.4853 0.4877 0.5110 0.5029 4.35  
 Elastic 0.4608 0.4853 0.4725 0.4900 0.4924 0.4889 0.4491 5.71  
 DANMF 0.4959 0.4813 0.4515 0.4924 0.4734 0.5052 0.4637 5.00  
 DR-NMF 0.4941 0.4830 0.4842 0.4456 0.4719 0.4982 0.4906 5.42  
 iDRNMF 0.5245 0.5029 0.5134 0.5040 0.5134 0.5140 0.5175 1.00  
Table 10
The comparison results on the Yale dataset for Poisson noise, evaluated based on NMI and ACC. The top three performances are highlighted 
in boldface, underlined, and double-underlined, respectively.
 Noise level 𝐿2,1 Fro Cauchy Hx rCIM Huber Elastic DANMF DR-NMF iDRNMF 
 
𝜎 = 5

NMI 0.4877 0.4924 0.4897 0.4797 0.4813 0.4815 0.4864 0.4884 0.5082 0.5193  
 ACC 0.4394 0.4606 0.4455 0.4424 0.4364 0.4364 0.4455 0.4424 0.4424 0.4576  
 
𝜎 = 25

NMI 0.4640 0.4501 0.4446 0.4653 0.4447 0.4432 0.4704 0.4595 0.5011 0.4852  
 ACC 0.4273 0.4061 0.4000 0.4091 0.4061 0.4030 0.4303 0.3939 0.4788 0.4394  
 
𝜎 = 50

NMI 0.4600 0.4641 0.4606 0.4636 0.4683 0.4706 0.4517 0.4417 0.4999 0.4673  
 ACC 0.4212 0.4152 0.4091 0.4182 0.4091 0.4273 0.3939 0.3757 0.4545 0.4364  
 
𝜎 = 75

NMI 0.4404 0.4522 0.4815 0.4853 0.4420 0.4422 0.4353 0.4428 0.4573 0.4689  
 ACC 0.3970 0.3879 0.4424 0.4424 0.3879 0.3818 0.4030 0.4000 0.4091 0.4242  
 
𝜎 = 100

NMI 0.4566 0.4501 0.4489 0.4555 0.4323 0.4499 0.4425 0.4421 0.4575 0.4574  
 ACC 0.4242 0.3939 0.4212 0.4333 0.3970 0.3939 0.4030 0.3818 0.4303 0.4000  
 Avg Rank NMI 6.20 5.06 5.80 5.00 7.60 6.60 7.40 7.20 1.80 2.40  
 ACC 5.20 6.10 5.10 3.70 7.80 7.80 5.10 8.40 2.80 3.00  
Table 11
The comparison results on the Yale dataset for various noise, evaluated based on NMI and ACC.
 Method Gaussian Laplacian Cauchy G+L+C

 NMI ACC NMI ACC NMI ACC NMI ACC  
 𝐿2,1 0.4330 0.3842 0.4136 0.3855 0.4104 0.3770 0.4245 0.3758  
 Fro 0.4071 0.3697 0.3987 0.3552 0.3928 0.3539 0.3901 0.3612  
 Cauchy 0.4240 0.3830 0.4258 0.3758 0.4311 0.3939 0.4156 0.3855  
 𝛺 = {1, 2} 0.4465 0.4206 0.4433 0.4085 0.4240 0.3891 0.4520 0.4085  
 𝛺 = {1,Cau} 0.4418 0.3988 0.4595 0.4121 0.4501 0.4061 0.4424 0.4048  
 𝛺 = {2,Cau} 0.4668 0.4303 0.4188 0.3770 0.4488 0.4170 0.4345 0.4048  
 𝛺 = {1, 2,Cau} 0.4507 0.4145 0.4518 0.4024 0.4567 0.4242 0.4595 0.4133 
model, particularly in the context of the Yale dataset. The presented 
findings confirm the effectiveness of the iDRNMF method, particularly 
in higher ranges of noise. This establishes its superiority over the 
compared methods, affirming its suitability for tasks that require robust 
subspace extraction in the presence of diverse and challenging noise 
profiles.

4.6. Computational efficiency and runtime analysis

To provide a comprehensive comparison of computational effi-
ciency, we report the running times of all evaluated methods across 
seven datasets in Table  12. The computational experiments were con-
ducted using an Intel Core i7-3520M CPU with a 2.9 GHz clock speed 
and 8 GB of RAM. As a multi-objective and distributionally robust 
11 
method with a computational complexity of 𝑂(𝑛𝑚𝑟), iDRNMF demon-
strates competitive efficiency, particularly on Yale, ORL, MNIST, and 
Fashion. On these datasets, iDRNMF exhibits a moderate increase in 
computation time over Fro while significantly outperforming DR-NMF, 
another multi-objective method. Notably, iDRNMF remains consis-
tently faster than Huber and DANMF across all datasets, reinforcing 
its efficiency advantage over these more computationally demanding 
approaches. For the high-dimensional datasets OrganA and Blood, 
iDRNMF continues to achieve a favorable balance between efficiency 
and robustness. While its runtime is higher than single-objective meth-
ods such as Fro, L21, and Cauchy, it remains significantly lower than 
DR-NMF, which requires considerably more computation time (79.34 
s vs. 30.03 s on OrganA and 66.81 s vs. 24.19 s on Blood). Moreover, 
iDRNMF consistently outperforms Huber and DANMF, demonstrating 
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Table 12
Running time (in seconds) of various methods on different datasets.
 Dataset 𝐿2,1 Fro Cauchy Hx rCIM Huber Elastic DANMF DR-NMF iDRNMF 
 Yale 0.156 0.125 0.156 0.172 0.171 0.563 0.156 1.736 0.578 0.187  
 ORL 0.906 0.719 0.797 0.797 0.906 1.736 0.969 4.319 3.079 1.094  
 COIL20 1.875 1.734 1.871 1.953 2.062 2.801 2.187 5.551 7.064 2.437  
 MNIST 0.578 0.491 0.547 0.656 0.719 1.025 0.672 3.658 2.234 0.75  
 Fashion 0.594 0.406 0.516 0.696 0.719 1.007 0.703 2.769 2.219 0.797  
 OrganA 19.865 14.954 20.91 20.751 24.392 34.29 24.399 43.599 79.34 30.034  
 Blood 16.661 11.953 17.969 17.894 20.972 30.257 19.44 37.584 66.809 24.192  
Fig. 3. Convergence analysis of the iDRNMF model on the three datasets with different 𝜂. 
superior scalability to high-dimensional settings. Given the additional 
complexity introduced by its distributionally robust formulation, these 
results highlight iDRNMF’s ability to achieve enhanced robustness 
while maintaining feasible computation times. It is also important to 
note that both iDRNMF and DR-NMF involve an initialization phase 
for single-objective optimization, which is not separately reported 
in the table. Nevertheless, the overall runtime results confirm that 
iDRNMF strikes a practical balance between computational efficiency 
and robustness, making it a viable choice for high-dimensional and 
noisy data scenarios.

4.7. Convergence analysis

In this section, we explore experimental results to confirm the 
convergent property of the optimization algorithm. Fig.  3 illustrates 
the convergence of the iDRNMF model (depicted by the red line) 
across the ORL and MNIST datasets within the first 300 iterations. 
The 𝑦-axis represents the scaled value of objective functions, while 
the 𝑥-axis corresponds to the iteration numbers. The plots show that 
the objective value sequences on these datasets converge, providing 
empirical validation of the convergence feature of the proposed algo-
rithm. Furthermore, our observations indicate that the proposed model 
typically converges within approximately 200 iterations, highlighting 
12 
its rapid convergence and efficiency. The changes in the scaled values 
of the objective functions for 𝐿2,1 (blue line), Frobenius (orange line), 
and the Cauchy (green line) during the updating of the proposed model 
are also depicted. Notably, the convergence of all basis cost functions is 
guaranteed simultaneously with the convergence of the main objective 
function. The objective approaches one, indicating that each objective 
is close to the objective obtained when minimizing a single objective. 
This convergence suggests that the algorithm is efficiently minimizing 
each objective function, resulting in an overall enhancement of the 
performance of the model.

In Section 3.3.2, we discussed the parameter 𝜂 and its impact on 
convergence. This parameter determines the rate of change of 𝜆𝜏 and 
should satisfy 0 < 𝜂 < 1. Larger values, equivalent to higher changes in 
the impact of basis objective functions, may lead to the dominance of 
the largest value of objective functions for some iterations. Conversely, 
smaller values prevent this dominance and provide more opportunities 
for other basis objective functions to influence the final residue. To 
evaluate the effect of 𝜂 on the model’s convergence, we experiment 
with different values. For this purpose, we define two momentum 
coefficients 𝜂[𝑡]1 = 1

𝑡+1  and 𝜂
[𝑡]
2 =

𝜆[𝑡]𝑝∗

1+𝜆[𝑡]𝑝∗
× 1

𝑡+1  where 𝑡 is the iteration 
number, 𝑝∗ the index of the largest value among the basis objective 
functions, and 𝜆[𝑡]𝑝∗  is the coefficient of the largest value among the 
basis objective functions in iteration 𝑡. Fig.  3 compares the convergence 
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behavior for both values, with the results for 𝜂1 displayed on top and 𝜂2
shown below. As observed, for 𝜂1, the residue of the iDRNMF objective 
function initially rises in the early iterations and then decreases rapidly 
until convergence. This may be attributed to the higher value of the 
Frobenius residue and its dominance. In contrast, employing 𝜂2, which 
generates smaller values, helps to alleviate the dominance of any single 
basis objective function, leading to a monotonically decreasing curve.

5. Conclusion and future works

This study introduces the instance-wise distributionally robust NMF 
model, adapted to handling various noise types concurrently. iDRNMF 
exhibits remarkable adaptability to various noise types, making it 
particularly valuable in fields where noise characteristics are unknown. 
This parameter-free method focuses on individual instances and lever-
ages a multi-objective approach, resulting in superior robustness
against diverse noise patterns. A key innovation of our work lies in 
the development of a unified iterative reweighted algorithm for model 
optimization. This approach ensures efficiency while maintaining ac-
curacy in results. iDRNMF demonstrates the ability to handle common 
noise types like Gaussian, Laplacian, and Cauchy, making it well-suited 
for real-world applications with inherent noise. Extensive evaluations 
across nine established models on seven benchmark datasets validate 
the model’s superior performance compared to existing methods. Ad-
ditionally, we conducted tests using various noise models, including 
Gaussian, Laplacian, Cauchy, and combinations thereof, to comprehen-
sively evaluate and compare the effectiveness of the proposed data 
representation model.

While iDRNMF shows resilience to various noise distributions, it 
faces challenges with extreme outliers. A promising direction for im-
provement is to enhance the model’s ability to specifically address 
this issue. Inspired by truncated methods, we can integrate a robust 
thresholding mechanism to effectively filter out instances with un-
usually large residues. This approach will help identify and remove 
extreme outliers, thereby improving the model’s resilience to anoma-
lies. Additionally, incorporating faster optimization algorithms, such 
as Hierarchical Alternating Least Squares (HALS), with convergence 
guarantees, could further enhance the model’s efficiency and reliability. 
Building upon the model’s strength in handling diverse noise, another 
captivating avenue for future exploration lies in investigating its poten-
tial within a semi-supervised learning framework. In semi-supervised 
learning, unlabeled data often contains noise or irrelevant information. 
A distributionally robust model is less susceptible to the influence of 
noise, allowing it to extract meaningful patterns and information from 
the unlabeled data more effectively. Finally, our distributionally robust 
NMF model could be developed within real-world applications charac-
terized by inherent data heterogeneity and the presence of diverse noise 
distributions. Particularly promising domains include medical imaging 
analysis, where images can be corrupted by a combination of artifacts 
such as Gaussian, Laplacian, and Cauchy.
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